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Dirac Equation in (1 + 1)-Dimensional Curved 
Space-Time 
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The Dirac equation in (1 + 1)-dimensional curved space-time is solved explicitly 
for the spatially fiat Robertson-Walker space-time and the cigar metric consid- 
ered by Witten. 

1. INTRODUCTION 

Of late, quantum theory in curved space-time including (1 + 1)-dimen- 
sional gravity has attracted considerable attention (Boulware, 1975a,b; 
Christensen and Fulling, 1977; Najmi and Hewill, 1984; Gegenberg et al., 

1988; Brown et al., 1986; Mann et al., 1991; see Birrell and Davies for 
general review). The (1 + 1)-dimensional analog of  the Einstein equation 
for nonzero cosmological constant, namely R - A = 0, has been known for 
a long time. But it was only recently realized (Brown et al., 1986, and 
references therein) that a nontrivial theory of  gravity which has the field 
equation 

R -- A = 8~rGT (1.1) 

can be obtained from a covariant action principle. In the case of  the Dirac 
field the complete set of equations is 

R - 8~T (u) = 8r~m~7~O (1.2) 

where T O )̀ represents classical sources. 
The Dirac field in two-dimensional curved space-time was considered 

by several authors (Gegenberg et  al., 1988; Brown et  al., 1986; Mann et al., 
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1991). Very recently, Mann et al. (1991) have shown that for a source 
particle theory, the metric is given by 

ds z = ~(x) dt z - ~ dx 2 (1.3) 

where ~(x) is of  the form 

~(x) = ,~x2+ 2Mix I + c (1.4) 

Here we study the Dirac field in (1 + 1)-dimensional curved space-time for 
the cases 

(a) d s 2 = d t Z - a 2 ( t ) d x  2 (1.5) 

(b) ds 2 = tanh 2 x dt z - dx 2 (1.6) 

Case (a) involves spatially flat Rober tson-Walker  space-time and case (b) 
is, according to Witten (1991), the analytic continuation of the black hole 
(torsion-free) to a Lorentz signature. 

It may be noted here that in 1 + 2 dimensions also the Dime equation 
can be studied in a similar manner, as the ~ matrices still have 2 x 2 
representations. 

In Section 2 we briefly review the formalism of the Dirac equation in 
curved space-time using the dyad formalism. We also solve the Dirac 
equation for case (a) mentioned above. In Section 3 we solve the same for 
ease (b). Section 4 has a conclusion and discussion. 

2. DIRAC E Q U A T I O N  IN CURVED SPACE-TIME 

We introduce a locally inertial Minkowski frame where the ? matrices 
are usually defined. At each space-time point X, we introduce a local 
normal coordinate Y~.. In terms of  Y~, the metric at X is ~/ab. In terms of  
a general coordinate system, the metric tensor will be 

where 

g . v ( x )  - = -eu(x)ev(X)qab (2.1) 

e~(x) - ~ , a = 0, 1 (2.2) 

e~ are the dyads which project vectors between the two frames. The 7 
matrices in curved space-time are written as 

~ = e~v a (2.3) 
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where ~a are the fiat Minkowskian  7 matrices which satisfy 

1 
{ ~ ,  7b} = 2nab, 4 [~a ~b] = f f a b  

so that  
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(2.4) 

In 1 + 1 dimensions, #UF u simplifies greatly and using 

1 
F~. -- n / _ g  c3~ ( ~ - - g )  

we can reduce it to 

1 1 
E =  7 ~ - - & . ( n / - ~ e U ~ ) ~ - ~  (2.12) 

Thus,  the Dirac equat ion can now be writ ten as 

We now consider the metric 2 

ds 2 = dt 2 - aZ(t) d x  2 (2.14) 

2The Dirac equation in 3 + 1 dimensions in a flat Robertson-Walker metric was considered 
by Barut and Duru (1987). See also Najmi and Hewill (1984). Here we have considered 
explicitly a case, namely a(0 = %/t, which was not considered before. 

(2.10) 

(2.11) 

1 2 FUp = ~ g U[g,~,,, + g2~,~ - g~,,,z] 

r v} = 2g " (2.5) 

The Dirac equat ion in curved space-time can now be written as 

i7" V,q* - met = 0 (2.6) 

where V~ is the covariant  derivative, defined to be 

Vt, = &~ + F~ (2.7) 

The  F u are the spin connect ions given by 

1 ab,eVe (2.8) 1"# = ~ b cv;.u 

The F~, satisfy the equat ion 

07 u 
[F~,, 7 u] = ~ + F~p7 p (2.9) 

Here F~p are the Christoffel symbols for  the metric under  considerat ion 
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The dyads are given by 

1 
e ~  1, el = - ,  

a 

Here the 7 a matrices are chosen as 

,o=(,o Ol), 
From 

,, =(0 

7u=y"e~  

e o l = e ~  

we get 

{7 u, 7 v} = 2g. v 

Equation (2.13) then reduces to 

O, + ~ a  + ik7~ + a  imT~ ~k(t) = 0  

where we have taken 

~(x, t) = e ik~( t )  

ikxf ~ll (t) "~ 
: e  ~92( ' ) )  

From (2.19) and (2.10) we get 

O, gt i k \  
+ Ta + a f t '  + imO2 = o 

( a /k'~02 + iml, k' = 0 O, 4 2a a / 

Putting 

~1 = a-l /2hl  

and eliminating 1~2 from (2.21), we get 

+ m  2 h i = 0  
a v  

k2 
02 -t a2 

We consider the following cases: 

Sinha and Roychoudhury 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

a(t) = aot +2/D (2.24) 
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where D denotes the total dimension. The scalar curvature R = gUVRuv is 
given by 

2// 
R = - -  

a 

so that for a - - a o  t - l ,  R = 4t -2, and for a = aot, R = 0. It can be verified 
easily that T~ = 0, where the energy-momentum tensor is given by 

1 

Case (i) 

a( t) = aot- I (2.25) 

This is the case of the rapidly contracting universe (see footnote 2). 
Equation (2.23) then reduces to 

k 2 
[Ot2+-~oot2+(m2+ik~qhx=Oao/j (2.26) 

Putting 

ik 
t 2 = z, el = m 2 + --  (2.27) 

ao 

we have that equation (2.26) takes the form 

or, putting 

02 2 ~  k2 ) 
4Z~5z2+ az+a--~oZ+~l h i = 0  (2.28) 

~O 1 = W,~,,(y) 

z = fly and hi = Z' 1/4~01(Z ) (2.29) 

where fl = iao/k, we have that equation (2.28) becomes 

(0 2 3/16 1 iaocq/4k~ 
O--f2 -~ y2 4 ~- y ) q ) l=0  (2.30) 

Comparing equation (2.30) with the standard Whittaker differential equa- 
tion 

1/4- ) ( 0 2 _ !  - .2 
\@2 4 ~-y- + y2 W =  0 (2.31) 

we find that ~o~ has a solution of the form 
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where 

iaoe~ iao m2 
1r 

4k 4k 

1 ~=~ 

or  

1/2 t2 +ao 
W~,.(z) is the usual Whittaker function. 

Now, 

( i O , + ~ a +  
02 =~ al 
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(2.32) 

(2.33) 

(2.34) 

i ao'/~ (2y a 1) 
- m  t ~yy-- y - 2  W.,. (2.35) 

Making use of the following recurrence relations for Whittaker functions 

W~ + 1t2,~ - Y 1t2 W~,~, + ~/2 + (x + #)W~_ 1/2,. = 0 (2.36) 

yW'~,. = y - - X  W x ,  # - -  W~c+ 1,p (2.37) 

( ,)( 1) 
(2x-y)Wx,~,+W,~+l,~,= # - ~ + - ~  l a + x - ~  Wx-i,u (2.38) 

we obtain from (2.35) 

~k 2 = ( 2ia~ i t2\  ~)""+'t~) (2.39) 

For k --+ - k ,  

iao m2 1 1 
x--+x'- 4k + ~ = x + ~  

Thus, proceeding in a similar way, we obtain 

+1(-k, t )=  aol12W~ + ~t2,~(~) 

~b2( -k ,  t) 2ia~ (x 1\ I/ t 2 
- - -  + ~ ) ~ " t ~ )  mfl 1/2 
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Thus the complete solution to ~O is 

(2.40) 7e 
~k(-k't)=Nka~ ~-f f  x +~ W~,u -~ 2i ( 1) (t2)J 

where Nk is a normalization constant. 
Case (ii) 

a(t) = ao t 
This model was considered (in 3 + 1 dimensions) by Schr6dinger in 1932 
(Schr6dinger, 1939, 1940). In this case equation (2.23) takes the form 

I02 +(k2+ik~+m21 2 ao] (2.41) 

Comparing equation (2.41) with the Bessel differential equation 

w" + 1/4)w z2 ] = 0 (2.42) 

where w =-zl/2jv(2z), we get 

2 = m  
(2.43) 

1 ik 

Thus 

h i = t l / 2 j v ( m t  ) 

r = ao  l/2J~(rnt) 

Making use of the recurrence relations for Jr(z), 

L _  l(z) + L+ ,(z) =--2v L(z)  
2 

L -  ~(z) - L +  l(z) = 2J;(z) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 
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I* 
J;(z) = L - ,  (z) - - L ( z )  

g 
(2.48) 

we obtain 

For  

J ; ( z )  = - L + ,  (z)  + - L ( z )  
2 

~b2 = iag 1 / 2 j  v _ 1 (mt) 

(2.49) 

(2.50) 

k--+ - k  

1 /k 
v ~ v ' = - - - - =  l - v  

2 ao 

proceeding in a similar way, we obtain 

~kl( - k ,  t) = aol/2J_~+ l(mt) 

~k2( - k ,  t) = iao 1/2j_v(mt) 

Thus the complete solution is 

~k(k' t) = Nka~ 

~k(-k,  t ) =  N k a o l / 2 ( J j _ + i ; ~ ) ) e - i k x  

where Ark is some normalization constant. 

(2.51) 

(2.52) 

(2.53) 

3. DIRAC EQUATION FOR CIGAR-SHAPED METRIC 

Here we consider the metric (called "cigar metric" by Witten) 

ds 2 = tanh 2 x dt 2 - dx 2, x > 0 

The scalar curvature is given by 

R = 4 sech 2 x 

which is regular at x = 0. 
Calculation of the energy-momentum tensor 

1 
T~v = R~v - ~ guvR 

easily shows that T~ = 0. 

(3.1) 

(3.2) 
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The metric (3.1) can be obtained from the Schwarzschild metric in the 
following way. The Schwarzschild metric is given by 

(l 
Making a change of coordinates 

where 

u = (u"  + v ' ) / 2  

v = (u" - v ' ) / 2  

we find that the Schwarzschild metric takes the form 

32M 3 e-r/2M 
d s  2 - d u  d v  + r 2 ( d O  2 + sin 2 0 dcp 2) (3.3) 

r 

where u, v are Kruskal-Szekeres coordinates. Discarding the radial part 
and after a suitable coordinate transformation (Ellis e t  a l . ,  1992), we can 
write the metric (3.3) as a conformally rescaled form of  the two-dimen- 
sional black hole metric 

1 
d s  2 = d u  d v  (3.4) 

1 - u v  

where 

which is singular at u v  = 1. Putting 

2 u  = - - e  x ' -  t 

2 v  = e x" + t 

x '  = x + In( 1 - e -2 0 

it is easily seen that equation (3.4) takes the form of  equation (3.1). The 
physical singularity of  (3.4) is at u v  = 1, where the curvature blows up, and 
consists of  a past and future branch. The past branch is a naked singular- 
ity. The future branch is the black hole singularity, from which no signal 
can cross the horizon to an observer in the original x, t region. For  our 
metric, the dyads are 

Co~ = coth x, e] = 1, e~ = e ~  (3.5) 

u"  = r - -  1 e r/4M cosh 

v '  = r - 1 e r / 4 M  sinh 
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and the Dirac equation takes the form 

+ 1 E,~ot~x+,O,l(~ ~ ) + / m +  0 
where 

O(x, t) = e-~wtO(x) 

_,w/0,(x)'\ 
= e  tO2(x)) 

or, 

Putting 

- iw coth x + Ox 4- - -  

- i w  coth x - Ox 

,)  
sinh 2x 01 "]- irH02 = 0 

l) 
sinh 2x 02 + ira01 = 0 

02 ~- tanh-1/2x q~2(x) 

and eliminating 01 from (3.8), we obtain 

[0 2 + (w 2 - iw) cosech 2 x + (w 2 - m2)]402 = 0 

Putting y = - s i n h  2 x, we see that (3.10) reduces to 

02402 [1 y )  040 2 _ [ k  2 fl(fl_47 
Y(1 -Y)  d-~- + t ~ -  -~y 1)]402=0 

where fl = - iw.  The general solution of (3.11) can be written as 

(3.11) 

Then 0 can be written as 

(3.12) 

e-iwt(Ol~ (3.13) 0 = \02J 

Expressions for 01, 02 which are consistent with the flat-space limit are 
given by (~ 1 ,) Ol=Nwzl/2(z-1)l/4-iw/2F - a , ~ - b , ~ , z  (3.14) 

02 = xVwzl/2( z -- 1) 1/4+i~42F 1 + a, 1 + b, ~, z (3.15) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

[ ( ~  ) ( , , 3 ) ]  
402=7/2 AF a,b, , 1 - - y  +B(1-y ) ' /EF  a + - ~ , b + - ~ , ~ , l - y  
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where 

i 
z = cosh 2 x, a = ~ (w + k), 
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i 
b = ~ ( w  - k )  (3.16) 

To show that (3.14) and (3.15) have the correct asymptotic behavior (i.e., 
for large x, we should get the flat-space behavior) we use the asymptotic 
formula 

F(c) F(b - a) 
F(a, b, c, z) ,.. ( - z )  - "  (3.17) 

r(b) F(c - a) 

It can be easily seen from (3.14) and (3.15) that for large x, we have 
~'1, ~2 "~ e+-ikx. Here Nw and ?7 W are normalization constants related by 

[Nw[ 4[~w lab 
m 

4. DISCUSSION AND CONCLUSION 

In this paper we have considered the Dirac equation in (1 + 1)-dimen- 
sional curved space-time. We have considered two kinds of metric, a fiat 
Robertson-Walker space and the so-called cigarlike metric obtained by 
Witten. Now, to study quantum field theory in curved space-time, one must 
quantize the solutions obtained. To obtain canonically quantized modes, 
one must get a complete set of orthonormal wave functions with an inner 
product defined over a Cauchy-like surface E: 

(Z[cP) = fz dE ze~TacP (4.1) 

This essentially implies the evaluation of the integrals of the product of the 
normalized wave functions. 

In general the evaluation of these integrals in closed form is difficult. 
However, in asymptotic cases the integrals can often be calculated without 
much difficulty. Quantization of  the wave functions and its application will 
be taken up in a future publication. 
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